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A finite-difference approach has been developed for precisely
determining diffusion coefficient and T, relaxation time in fluid
samples analyzed by magnetization-grating rotating-frame imag-
ing (MAGROFI) with either a surface coil or a toroid cavity
detector (TCD). This approach avoids shortcomings of phenome-
nologically based approximations, such as neglect of sample ge-
ometries with singularities at the confines of the sample volume,
and accounts for the diffusive edge enhancement observed in fluid
imaging. Error limits are discussed. The new method has been
applied to the determination of the self-diffusion coefficient for
MAGROFI experiments using TCDs filled with acetone. © 2000
Academic Press
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INTRODUCTION

This article presents a finite-difference approach that w

accurately determine diffusion coefficients from rotating-fra

gradients have been developés-10. Among these, a very
robust and versatile method is MAGROFN#&nNetization-
grating rotatingframeimaging), developed by Kimmicét al.
(20). Its key element is the simple two-pulse sequence sch
matically shown in Fig. 1. The first pulse (P1) generates
Zz-magnetization grating along the direction of tBegradient.
During an evolution time 1), diffusion and relaxation decay
the grating, while coherent flow, if present, coherently shift:
the positions of its maxima and minima. The second pulse (P
is part of an RFI (otatingframe imaging) procedure that
samples the remaining magnetization with incrementally
increased pulse widths (Fig. 1&)1j or with a rapid-imaging
pulse train (Fig. 1b)X2-14. With the remaining magnetiza-
tion grating imaged, it is possible to simultaneously evaluat
diffusion coefficients, flow velocities, anf, relaxation times.
Before we describe the new finite-difference approach, w
ﬁ?ca” and discuss the conventional, phenomenological tre:
ment of MAGROFI with surface coils or, alternatively, with

mFCDs.

NMR images obtained with toroid cavity detectors (TCDs).
Diffusion describes incoherent flow because of Brownian mo-

tion; hence, it is the mass transport phenomenon that eq
brates concentration gradients. Since diffusion plays a cru
role in many chemical reactions, phase transitions, and ph
transfer reactions, its determination is fundamental to the

uil MAGNETIZATION-GRATING ROTATING-FRAME
. IMAGING

cial

88Qrface Coil

un-

derstanding of reaction mechanisms and kinetics. MoreoverA surface coil (5 exposes the sample to a reasonabl:
diffusion limits the accuracy of techniques based on coherestiform B, gradient, i.e., to a linearly decreasigg field. If
flow, such as chromatography or electrophoresis. Sometimagplied on resonance, the pulse P1 of the MAGROFI sequen
however, it is highly desired to improve diffusion pathwaydgduration:t,;) generates a homogeneogsmagnetization he
e.g., in methods of medical drug delivery, such as iontophoté, in which the magnetization is twisted with a constant pitct

sis (1) or phonophoresis2j.

along the direction of th&, gradient (Fig. 2).According to

Common NMR methods for measuring diffusion are thBloch’'s equations, the component of the helix forms a

PFG pulsedfield gradient) or the PGSEp(lIsedgradientspin-
echo) technique employing pulseB,-field gradients §, 4).
Recently, however, several new technigues implemeriing
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sinusoidal magnetization grating of

M, o(X) = Meq( x)cog —yBitpy)

= M%) cog —yBtp; + kpX), (1]
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a P1 P2 acquisition procedure, and that they must be scaled by
1 standard if needed.

IT‘J; In addition toT, relaxation, Eq. [2] represents an exact anc

complete solution of Fick’s second law of diffusionag{ot) =

)

RF — = D(9%c/ax?), if
T AQ t
(@) Eq. [1] is a boundary condition (starting condition),
b P1 P2 P2 P2 P2 P2 P2 (b) the gradients, along the sample is strictly uniform,
. H H H ” H H (c) the sample evenly expands perpendicular to the gradie
RF - - - - ol ol — - G, and
AQ AQ AQ AQ AQ AQ f (d) the sample is homogeneous and contains no singulariti

FIG. 1. MAGROFI sequence utilizing (a) the traditional chemical-shif@long the gradient.

resolved rotating-frame imaging (series of transients with incrementally ip- . - . |
creasing pulse width) and (b) the rapid-imaging pulse train (single-poiEtOr surface coils, prerequisites (a) throth (d) are fulfilled Onl‘

acquisition between equal pulses). RF, radiofrequency channel; P1, prepardifdrt C€rtain extent. For example, the assumption of a unifor
pulse; r, evolution time; P2, RFI pulses; AQ, acquisition. gradient,G, is an approximation1(0). Additionally, singulari

ties exist at the walls of the sample container, where diffusio

is restricted toward the inside of the sample. Consequently,
where the subscript zero indicates that no evolution time hefect known as diffusive edge enhancement in fluid imagin
past after the preparation pulse P1 was executed. In Eq. [(]7) is observed. If areas of edge enhancement are evalua
M () is the spatially dependent equilibrium magnetizatign, for diffusion using the phenomenological approach of Eq. [2]
is the magnetogyric ratic is the distance along the center axigoefficients are extracted, which are considerably smaller th:
perpendicular to the coil’s plan; is the virtualB, field that the true diffusion coefficient. These ill-determined coefficient:
would occur at the center of the coik (= 0) if the gradient have been termed “effective,” “apparent’d), or “localized”
G, = (AB,/AX) is uniform up to the surface coil’'s plane, and19) diffusion coefficients but do not reflect the physics preser
ke, is the k-space wave number generated with the pulse Hi,the sample. Hence, edge enhancement is not the result
i.e., key, = vGitp. In the case of a homogeneous sampléycal changes in the diffusion coefficient but simply caused b
Mc(X) is a constant Nl.;). From a rigorous mathematicalthe presence of singularities such as sample boundaries. F
approach similar to the one of Kimmidt al. (10), we found thermore, because the area of edge enhancement depends
that, during the evolution timeg the grating changes accordinghe evolution periodr of the NMR sequence, apparent diffu-
to

T

M,.(x) = Meq[l — exp( —7 ){1 — exp(—Dk3,7)
X cog —yBStp, + kPlX)}]a [2]

whereD is the diffusion coefficient. The cosine term in Egs.
[1] and [2] differs from Kimmich’s original equations, in
which the origin of the distance scale is placed at the extrap-
olated point oB, = 0. Conventionally, however, the origin is
positioned at the center of the surface coil, and the phase
(—yB%s) must be added. Moreover, coherent flow is ne
glected in the derivation of Eq. [2], since it does not occur in
closed, homogeneous samples without convection currents.
Because of the principle of reciprocityl§), RFI intensities,
I.(x), are proportional not only tiM,.(x) but also toB,(x).
Thus, if intensity data are acquired by the surface coil that is
also used for generating the grating(x) must be multiplied

by x to yield information abouiM,.(x). In contrast, Canett FIG. 2. Magnetization grating generated by a single radiofrequency (RF

al. (6) used a separate Helmholtz saddle coil for data acqui%y_lse applied to a surface ct_).il. Within the syrche coil_'s unif(B[r_gradient,
the RF pulse rotates the equilibrium magnetization (a) into a helix (b) along tt

tion ?Xhlbl_tmg a,homOQen?OlBl field along the sample, anddistance axi, i.e., into a sinusoidal magnetization grating. Magnetization
no signal intensity correction was necessary. Note, hOWeV@gtors along the axis are symbolized by straight pins, in which each heac
that all signal intensities are relative numbers regardless of deicts the tip of a vector.
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sion coefficients are strongly influenced by the time frame of
the experiment, and even come out negative sometimes. Uti-
lizing the more meticulous mathematical approach of finite
differences, however, we show that edge enhancement is solely
defined by regular diffusion.

Nevertheless, surface-coil MAGROFI is a robust new tech-
nique for determining diffusion coefficients when data from the
center of a sample are evaluated with Eq. [2]. Because the
technique consists of a simple two-pulse sequence, in which no
B, gradients are switched, the precision of determination is
similar to, if not better than, that of other NMR methods. The
accuracy of a diffusion coefficient determined by surface-coil
MAGROFI depends, among other factors, on

(a) how well defined and strong the uniform gradieBt,
is,

(b) how accurately its value can be determined, and

(b) how many experiments are used for the evaluation.

A MAGROFI experiment that utilizes a uniforfa, gradient, J

such as the gradient of a surface coil, delivers only one data r
point for a linear regression of amplitudes versus evolution %

time (10) or, alternatively, versuk-space wave number. Ac-
cordingly, multiple MAGROFI experiments must be recorded

to determine a single diffusion coefficient. Because of tIﬂ{groid cavity detector. The central conductor of the toroid cavity is symbolize

Iine_ar-regre_ss_ion procedure, the Sta_ndard deviation of the gif+he vertical rod in each plot, while straight pins exemplify the magnetizatio
fusion coefficient decreases proportional ®{ 2), whereN  vectors. Because of the nonuniforBy gradient, the RF pulse rotates the
is the number of experiments. equilibrium magnetization (a) into a helix (b) with a high pitch close to the

In the foIIowing we discuss the use of nonunifory central conductor and a lower pitch further away. Zlm®mponent of the helix

. ") reveals a nonuniforrrmagnetization grating. The evolution of this grating
gradlents for MAGROFI measurements, and show how a dl‘i used for the determination of diffusion afd relaxation.

fusion coefficient is extracted from multiple data points of a
single MAGROFI experiment.

FIG. 3. Magnetization grating generated by a single RF pulse applied to

. . yAt
Toroid Cavity Detector M,o(r) = Meqcos( - Pl). 4]
While TCD B, gradients are not uniform, they are mathe

matically well defined 20) by Figure 4a shows data points (circles) from a grating sampled |

toroid cavity MAGROFI with the evolution timer, set to zero.
3] The rotating-frame imaging intensitidgr), obtained from the

experiment have been divided b¥to yield radially dependent

magnetization datayl,(r). This scaling procedure was eut
whereA is the so-called “torus factor,” i.e., the proportionalityined in detail beforeZ0). Note that an approach similar to that
constant betweeB, andr . Near the central conductor ofof Canetet al. (6), where the scaling of intensities is not
TCDs, B, gradients are typically much stronger than those oéquired because the data are sampled by a separate coi
surface coils. We have achieved gradients of 6—8 mT/mmemogeneouB; field (Helmholtz saddle coil), cannot be con
(600-800 G/cm) using conventional NMR transmitter equiptucted with TCDs.
ment (H band, 100 W; X band, 300 W). For this reason, and Whenever the evolution timer, is smaller than five times
because of the high accuracy to which the gradient is defindlde relaxation time constarit,, undesiredxy magnetization
toroid cavity MAGROFI should, in general, yield diffusionremains at the time when P2 is started. This unwanted, trar
coefficients that are more accurate. According to Eq. [3], tverse magnetization is canceled by accumulating multiples
pulse P1 generates a magnetization helix with decreasing pitalo transients for each RFI spectrum, in which the phase of F
directed radially from the central conductor of a TCD (i.eis cycled by 180° versus P2, or multiples of four, in which the
along the radial dimensionin Fig. 3). The radially dependent, phase of P1 is cycled by 90° versus P2. A simulation of th
asymmetricz-magnetization grating\,.(r), of this pulse is grating was conducted with Eq. [4] and fitted to data from a
described by experiment with acetone at room temperature, refidingnd

A dB(r) A
BN =1 > —gq =,
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shown as a solid, heavy gray line. For the room-temperatu

acetone sample used in the experiment, the fit returns a diff

sion coefficient of 4.7 107° = 0.20X 10 ° m*s* (+4.2%)

y and aT, relaxation time of 5.45+ 0.11 s (1.9%). For

\ comparison, a room-temperature diffusion coefficient o
N\, 4.77 % 10°° m* s ' is reported in the literature2). In toroid

cavity MAGROFI, the standard deviation of diffusion-coeffi-

cient measurements decreases with the number of data poi

that fall inside the TCD. This number of data points is opti-

z Magnetization @

% e éée*""’%.q_b mized by properly choosing the pulse-width incremeiit,,,
® i\ /7 \ and is increased with the number of spectrarecorded in the
To %; —F LW . RFI procedure Z0).
g LW/ N S While Eq. [5] provides a reasonable phenomenological de
E e scription, it is not an exact solution of Fick’s laws of diffusion,
. . , but an approximation that was derived by modifying Eq. [2]. Ir
1 2 3 4 5 contrast to the case with uniform gradients, no mathematical
Radial Position, mm exact, analytical solution is known to reproduce the evolutio

FIG. 4. Plot of experimental RFI intensities (circles) versus radial distancOf gratings in TCDs, not even inside the sample remote fror

obtained from toroid cavity MAGROFI experiments on a homogeneous saﬁle |mpermeable boundaries at the central conductor and t
ple of acetonet(, = 212 us,n = 512, Aty, = 12 us, A = 0.6934+ 0.0014 outer wall of the cavity. Accordingly, although tigs gradient
mT mm). Dark gray, vertical bars represent the sample confines.at 1.0 is well defined and usually stronger compared with surfac
mm (central conductor) and at., = 5.0 mm (outer wall) of the toroid coils, the evaluation of diffusion coefficients with Eq. [5]
detector. In (a), the evolution time, was set to zero, so that no decay of thqnvolves approximations that increase the determination errc
grating occurred. In (b), the evolution time was sette 1.0 s, and decay of . .
the grating because of diffusion is clearly visible. The thin, horizontal IinI0 take advantage of well-defined, strong, and nonuniforr
shows the baseline offset causedTayrelaxation. In both plots, the heavy gray gradients while avoiding the use of phenomenological appro:
line represents the best fit of Eq. [5] to the experimental dBta=(4.72 X imations, we developed an iterative, numerical finite-differenc
10°°, T, = 5.45s). procedure that reproduces the evolution of asymmetric gratin:
more accurately. With this new approach, rotating-frame i
ages of MAGROFI experiments can be described regardless

M. In Fig. 4a, the best fit is shown as a solid, heavy gray linghe detector's geometry or the sample’s singularities and h
Similarly, the grating was sampled after an evolution time ghogeneity.

7= 1.0 s (Fig. 4b). Evolution of the grating can be reproduced

mathematically by Z1) FINITE-DIFFERENCE APPROACH
T Dy?A%t3r Finite-difference calculations are numerical procedure
M¢(r) = Meg 1 — exp — T, 1—exp - r4 commonly used to solve systems of partial differential equs

tions with complex boundary conditions, especially when timi
« cos( _ 7AtPl> } ] [5] progress cannot be reproduced easily and precisely with pt

nomenological equations. For finite-difference procedures, tt
spatial range, area, or volume under investigation is divide
Because of the distinctivB, gradient, az-magnetization grat into a finite number of intervals, fields, or volume elements
ing formed in a TCD exhibits a wide range kfspace wave respectively Ax in Fig. 5). The elements are characterized b
numbers. Thus, a single MAGROFI experiment is sufficient faingle, distinct function values optimally acquired from the
extracting the diffusion coefficient and tAg relaxation time interval’'s midpoints. For each function valud(d), fla + 1),
constant from a three-parameter fit of Eq. [5], refinMg, D, ..., f(k — 1), f(k), f(k + 1), ...,f(z — 1), f(2) in Fig. 5],
andT,. If only two transients are utilized to cancel remaininghe time-dependent differential equation is solved individually
transversal magnetization (phase cycling by 180° of P1 verdkisher neighboring data or, at singularitiesdndz in Fig. 5),
P2) and, in addition, rapid imaging by a pulse tral2{14 is additional function information such as the impermeability o
used as the RFI procedure (Fig. 1b), a TCD MAGROFI exsample confines is included to serve as a boundary conditi
periment is conducted in less than a minute of experimental the calculation. The result is a set of new function value
time. The torus factorh, derived from the experiment in Fig.for an advanced but limited time stefpt. The time step width
4a was used for the simulation in Fig. 4b, since both the sampfeist meet stability conditions, discussed later.
and all parameters but the evolution time were kept the samdn some fields of scientific research, finite-difference calcu
during the two experiments. In Fig. 4b, the best fit is alsations have become widespread for simulating transport ph
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A transport phenomena. Digital modeling of these analogue m
| aa+ k1 k k+ z1 z chines R9) revealed that the maximum error of computing is
N IR b significantly reduced compared with straight finite-differenc
methods 80). In principle, the model is based on the identity
between equations of transport phenomena and those gove
ing electric ladder networks. It allows the mathematical trea

At \ ment of a resistor and capacitor (RC) ladder network to b
I ---- employed for MAGROFI diffusion experiments by substitut-
*‘Ax b x ing z magnetization for voltage, diffusion coefficients for con-

ductivity, and sample volume for capacitance. Figure 6 shov
FIG.5. Diagram illustrating the principle of conventional finite-differenc

) e ) ) SN . e"mw an RC network is assembled to serve as an analog
propagation. The spatial dimension of interest is divided into equal intervals S . . .
Ax. Function values (filled circles) of the intervals are individually progresse@?del for the L.meven distribution of function values mlcy“n'
by finite time stepsAt. Neighboring values or other function information (e.g.drical TCDs. Since voltagesi() represent locat magnetiza
sample confines) is used as boundary conditions. tions (M,,), it is important to know the radial positions

represented by the experimental data pointShese positions

) o ) are obtained from processing the RFI intensities of the toro
nomena. In electrochemistry, for example, f|n|te-d|fferenc(§dvity MAGROFI experiment.

calculations are often included in computer software packagesry yield spatial information from RFI experiments, a serie:
for analyzing near-electrode processes. For imaging molecyi@isnectra acquired with incrementally increasing pulse width
motion by NMR, however, evaluations based on the propagagfy 14 is transformed by a second, real-data Fourier tran
theory @) are common. Nevertheless, we preferred the finitgsmation (11, 20, 23. Alternatively, the intensities obtained
difference simulation for analyzing magnetization gratings By the rapid-imaging pulse train (Fig. 1b) are directly con
TCDs because it is able to accurately reproduce the effects Qfiaq by a real-data Fourier transformatict®414. From

diffusion in the bulk sample and close to impermeable bounda, approaches, a set of intensities versus nutation frequer

aries or other singularities. _ _is derived. The nutation frequencies, are spaced evenly by
Finite-difference equations for solving standard propagan(erl nAt,,) ", wheren is the number of pulse-width-dependent

problems are introduced in many textbooks. Nevertheless, Wheriments. They range from ., = 0 Hz to the frequency
present a detailed derivation of TCD finite-difference equgg|ow Vim = (—2Ats) 7 iLe. ’th]e Nyquist frequency. The

tions, since it differs from conventional one-dimensional aFNyquist frequency is determined by the pulse-width incremen

proaches (Fig. 5). In these conventional approaches, Cartes{gl of the RFI experiment but is not included as a data poin
coordinates with uniform planar volume elemen®/(0x = Thus

const.) and equally distributed data pointsx(= const.) are
assumed, while the cylindrical symmetry of TCDs requires

cylindrical coordinates with the consequence that the experi- Kk n
mental data are distributed unevenly on the radial distance axis viy=— s, k=0,1,...,5—1. [6]
(20, 23 nAtp, 2

Derivation of Finite-Difference Equations Since 27y, = —yB, and B, = A/r (Eq. [3]), nutation

A common approach for obtaining finite-difference equdrequencies of TCD experiments are transformed into radiall
tions is the use of Taylor's expansion theore2d)( For equi- dependent data at
distant intervals and Cartesian coordinates, the leading term
neglected is usually second order in distance squared between
two data points and sufficiently small. For an uneven distribu- YANAtp, n
tion of intervals on the radial axis in cylindrical coordinates, "= "omk k=1,2,...5-1 [7]
however, determining the error terms is more cumbersome. If
simply the same expansion-theorem approach is used, the
leading error term can increase up to first order in distandgecauser, = «, the radius ofk = 0 is omitted from
Thus, to avoid the dilemma of undefined or unreasonably largebsequent calculations. Equations [6] and [7] indicate th
error terms, we prefer to solve the diffusion problem by anal-CD nutation data are evenly distributed in frequency spac
ogy to an electric circuit model that has been utilized extebut unevenly distributed in real space.
sively in heat-flow calculations2f) but has been mentioned To compare experimental data with finite-difference simu
only occasionally with respect to diffusion measurementations, we divided the TCD’s radial coordinate into intervals
(26, 27. The analogy was introduced by BeukezB), who (Ar,) that are characterized by function values at Conse
invented electric analogue machines to study complicatgdently,Ar, ranges fronr ., to ry_y:
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Rkn,k Rk,k+1 Rk,ki1 Ly

Car: Cu Icm

FIG. 6. Electric currents in an RC ladder network are used as an analogue model for the transport of magnetization in toroid cavity detectors. The:
across capacitors and the magnetizations of volume elements are governed by the same mathematical relationship. Accordingly Gidaeitioisntified

with cylindrical-shell volume elements/(), voltages ¢,) with magnetizationsNl,), and the reciprocal of the resistivitk (*), i.e., the conductivity, with the
diffusion coefficient.

_ YANAtp, Vo= wh(rfe—rii2), Vo= ah(ri,— i), [10]
Are= Tz = T2 = PN (8]
2’7T(k -1z

wherea andz indicate the data points closest to the outer wal
Note thatr,.,, is smaller tharr,_,,,, andAr, decreases ds and the central conductor, respectively. Note thaor V, only

increases. Accordingly, the size of the intervals is small needver volume inside the TCD, althoughor r, are sometimes
the central conductor and increases to the outer wall of thatside of the sample volume.

cavity. If the distribution of experimental data points is too Inthe analogue model of Fig. 6, transportzahagnetization
coarse to accurately describe the magnetization profile, it midigtween volume elements to equilibrate magnetization grac
become necessary to subdivide eakh, region further by ents is identified with electric current between capacitors t
placing additional, virtual data points betwegrandr,,,. For equilibrate differences in voltage. The current ; betweerC,
most of our data sets, however, the preparation pulse widgthdC,_; is given by Ohm’s law,

(tpy) was small compared to the maximum imaging pulse width

(te: = % nAt,,); accordingly, the spatial separation of the data

points was sufficiently fine to map the distance between two U ™ Uk

) N . : h1=g TR [11]
adjacentz-magnetization extrema with at least two experimen- kk—1 k—1k
tal data points.

As shown in Fig. 6, capacitol, are located at the radii  \yhereR,,_, andR,_,, are the resistors between the capacitor

(Eq. [7]) and fu.nction as stprage devices for elec.tric gharge. d-pk andC,_,. This notation indicates that, for exampR.1 is
the analogy withz-magnetization transport by diffusion, ca-cgnnected toC, in the direction ofC,.,. From an initial

pacitors C,) represent volume element¥,] that cover the gistribution of voltages across the capacitars changes ac
intervalsAr, of Eq. [8], i.e., consist of cylindrical shells with cording to
an inner radius of .., and an outer radius of,_,,,

_ 2 .2 du, . )
Vie= mh(ri 12 = N2, ) Ckaz etk — ket
whereh is the height of the sample volume inside the TCD. Uers — Uy U — Uy
The capacitor€, andC, in Fig. 6 are those closest to the outer “R IR R TR , [12]
and inner radial confines of the sample volume, respectively. KLk n Pkl Pkt Lk

Their volume analogued/, andV,, adjoin the outer wall at

I .ax and the central conductor at;,, where the sign of is positive, if current runs from smaller to
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larger radii, i.e., from the center of the torus to the outside. Bubstitution with Egs. [7], [8], and [9] leads to
Eq. [12], the analogy of the RC ladder network to the diffusion
problem is readily seen, when the flow of electrons (i.e., dM,, 1 M, 1 — Mgy

current) is identified with the flow of matter. Using the addi- —4; = k(Ar,)? N
; . : . .. k 1 k+1 1 [k+3
tional analogies of voltage with concentration and conductivity In + " In
(i.e., reciprocal resistivity) with the diffusion coefficient, Fick's Di+1 k+1 Dy k
first law of diffusion results.
Since no current crosses the boundaries,gtandr ., in _ Mz = Mzjs ' [17]
Fig. 6, voltages across, andC, change according to 1 k 1 k—3
D, In(k - %> + D, . In(k — 1)
dua Ua+1 = Ua duz U, — U,

During a finite periodAt, the magnetizations!,, change from
M, 10 M, s ai- A linear approximation of Eq. [17] yields the
[13] general, explicit finite-difference equation for TCDs,

e e o
At Ruiat Raan' 2 dt Ryi+R.q,

In electrotechnology, resistanBealong a distance is defined _ At
Mz,k,t+At - Mz,k,t t a2
as k(Ar,)
Mz,k+l,t - Mz,k,t
X 1
1 k+1 1 (k+3
R= | — dx [14] Do M sz To M K
S(x) kit \ K+ 3 k
. Mz,k,t - Mz,k—lt
_1
wherex is the resistivity, and5(x) is the area through which 1 In K + ! In 2
the current passes. In the cylindrical geometry of TCDs, the D \k-1%1) Di: (k-1

areaSis a cylindrical surface that depends upon the radius, i.e.,
S(r) = 2#rh. Assuming uniform resistivity across each inter-
val Ar, the resistor}, ., andR,,., are determined by

(18]

If diffusion is independent of radial position, a single diffusion
coefficientD can be introduced, and Eg. [18] simplifies to

Kk M-1/2 K M
Rick— :In< ) R =In( ) DAt
“h 2mh M Wt 2mh T re e M erar = Maye + K(Ary?
[15] k
Mz,k+l,t - Mz,k,t Mz,k,t - Mz,kfl,t
k+1y K [19]
Since, in Beuken's model, diffusion is equivalent to conduc- In< K ) In(k — 1)

tance in electric networks, the diffusion coefficidhtis iden-

tified with the conductivity, i.e., the reciprocal of resistivity, ] ) o ) ]
. Equation [12] and the analogies 6%, with V,, u, with Equation [19] is the finite-difference equation that compute

M,,, and D with «* provide the differential equation for changes of radially distributed magnetization in homoge-
irrégular intervals in TCDs neous TCD samples. The equation contains all the charact

istics of TCDs and, in addition, of the RFI sampling therein
Accordingly, natural logarithm terms occur in Eq. [19] as ¢

dM M M result of integrating across differential volume elements i

; dtz’k =—7 zhd Z’; cylindrical geometry (Eq. [14]). Furthermore, the FFRst
|n(rk*1’2> + In( & ) Fourier transform) algorithm applied to RFI data and the

2mhDy. 4 Mer1 2mhDy N2 special relationship between tiigy field (thus, nutation fre
M, —M,, , quency) and radial distance in TCDs (Eq. [3]) cause the log

\ : . rithm terms to contain only data-point indicdg @s variables

1 M-1/2 1 M1 ) .
In In rather than radial distances,].
2’7Tth Ik 2’7Tth,1 M—1/2

For large data-point indices (e.&k,> 500), thetermsk
[16] In[(k + 1)/K] andk In[k/(k — 1)] both approach unity, and
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Eq. [19] transforms into the well-known finite-difference equa- " 2DAt 1
; . + _
tion of planar sheet24): 2zl g2 2 ( z )
In
z—1
DAt
Mk teat = Mzm'+(Ar02(MLMJJ_'2MLKt_ Mzi-14)- =M;z2P; + Mzz1Pz1 [22]

[20]  For further simplification, Egs. [21] and [22] are combined ant

Accordingly, differences between individual calculations WitHansformed into matrix notation. Accordingly,
Eq. [19] and those with Eq.[20] can be quite small, even if Eq.

[20] is applied to the cylindrical coordinates of TCDs. To [Mzat+at Pa Pa+1 0\ [Ma;
compute significant time advancements, however, individual Co te
finite-difference calculations must be repeated many times an Mzitsat | = Pk-1 Pk Pr+1 My |- [23]
rapidly increasing cumulative errors occur. Hence, we prefer to T T
use Eq. [19] because it is more accurate. Mgzt at 0 Pzo1 Pof \Myz,

Equations [18] and [19] represent explicit finite-difference
equations that calculate the evolution of an initial radial dis2ut another wayM ., ,(f) = PM,(r), whereM,(r) and
tribution of magnetization in the cylindrical sample geometriyl ... »(r) arez-magnetization distributions before and after the
of TCDs. For computer automation of the finite-differencapplication of the diagonal propagation band maf&jxespec-
calculation, however, it is common practice to separate tkigely. The matrixP consists of the multiplierp, from Egs.
terms that involveM,,.,;, M,,, or M, ;. Accordingly, Eq. [21] and [22]. With Eq. [23], the evolution af magnetization

[19] yields in TCDs is calculated for the finite periodt. To follow
magnetization gratings through the entire evolution timgne
DAt 1 propagation matriP must be applied multiple times starting
M xtrat = Myyine K(Ar,)? K11 + M,y with the initial grating,M ,,(r), of Eq. [4]. Hence,
k
In()
) M..(F) = PHM (1), [24]
|1 DAt 1 N 1
k(Ary)? | k+1 | k whereH is the number of propagation steps; ilé.= 7/At. In
"k Mk=-1 a homogeneous sample, the equilibrium magnetizaenis
DAt 1 uniform, and Eq. [24] can be normalized, yielding
+ Mzkflt 2
K K(AY k
(&rd |n<k_1) M2.(r) = P*M 2(r), [25]
= Mz 14Pir1 T Mz P + Mz 1¢Pi-1- [21] whereM?(r) = M,.(r)/MeandM2(r) = M o(r)/Me, The

normalized, initial gratingV12,(r) is obtained from the cosine

For the data points and z adjacent to the inner and outert€'m of Eq. [4]. With Eq. [25], progression of a magnetizatior
confines of the sample volume, equations similar to Eq. [2R[cfile in TCDs is calculated without explicit knowledge of

are derived based on Egs. [10] and [13]: Meq
2DAt 1 Convergence
Mz,a,t+At = Mz,a+1,t r2 _ r2 a-+ 1 .. . . . .
max — Ta+1/2 In( ) Finite-difference approaches are numerical calculations i
a tended to deliver results as close as possible to the true so
tions of partial differential equations. They are assumed “con
2DAt 1 oo o .
+ M| 1— = 5 ) patible” if the errors become zero as the finite differences i
Mmax ~ T2 |n(a ) space,Ar,, and time,At, both approach zero. Furthermore,
a they are called “stable” if the introduction of additional,

smaller steps in space or time does not increase the cumulat

= M;ai1tPar1 T MzaiPa; round-off error 81). In addition, it is important to watch
whether or not the finite-difference procedure converges. Sini
the step widths in space and time are interdependent, both ¢
z be too large to converge: as a result, oscillations with increa
n . ; o . )
z—-1 ing errors occur. In TCD experiments, finite differences ir

2DAt 1
MZ,Z,HM = Mz,z,t 1- 2 2
of

lz-12 = Vmin
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spaceAr,, are predetermined by the experimental data points a
(Eq. [8]). Therefore, the mandatory condition of convergence
limits the maximum, normalized time stepAt.

The finite time stepAt, which was introduced in Eq. [18],
evolved from a linear approximation of Eq. [17]. The approx-
imation is valid if particles from volume element interfere
only with neighboring volume elementg, , or V,.,, but not
with V,_, or V,,,. Thus, duringAt, particles should not travel
further than the smallestr of all volume elements. The root
mean square distancg, that particles travel in one spatial
dimension by random walk is given by the Einstein—Smolu-
chowski relation 32)

z Magnetization

)—(2
R [26]

x= 2DAt = DAt=

z Magnetization &

According to Eq. [8],Ar, decreases dsincreases, and the
smallestAr, of all data points inside the TCD should be the
one closest to the central conductor; i.Ar,, = r, 4, —
rmin. HOwever, because of the fixed confines,, andr .,,, of
the sample volume, the intervalr, = r . — .12 CanN, in
principle, be smaller thatir,, and an individual test must
be conducted. Additionally, the computer program must
determine whetheAr, and Ar, are large enough to be
included in the calculation. If either one is within the range
of the square root of the computer’'s round-off error, it
should be omitted. Without this determinatiokr, or Ar,
and, according to Eq. [26DAt can approach zero. Finally,
the smallest interval that is actually included in the finite- 5 7 Decay of a toroid cavity-magnetization grating according to
difference simulation is used to determine the maximumite-difference calculations (solid black lines) and calculations from the
normalized time stePAt. It should be set to a maximum of phenomenological approach (heavy gray lines) after the normalized evoluti
80-90% of the value calculated by Eq. [26] to ensure th#es of ()D7/(rw,)* = 0.0025, (0)D7/(rmr)* = 0.01, and (CP7/(rmr)* =
the finite-difference procedure remains stable and converges :‘:h‘logaei“”es show the initial grating generated by the preparation puls
. . . gray, vertical bars indicate the sample confines gt = 1 and
even if t_here are severe round-off errors. In_ f|n|te-d|fferenq.<,::_rmin — 5. To exclusively show the effects of diffusion, we neglectd
calculations, the convergence criterion discussed hererdgxation in the calculation.
generally known as the Courant-Friedrichs—Lewy criterion
or, in short, the Courant criterior88).

z Magnetization ©
o

1 2 3 4 5

Normalized Radial Position (r/r_. )

magnetization to zero as predicted by Eq. [5] with = .
Because of the impermeable boundaries,atandr ., diffu-
sion is limited to within the sample volume, and magnetizatio
is equilibrated to the average sample magnetization of tt
initial grating.

Based on the finite-difference matrix expression of Eq. [25] Two additional findings distinguish the results of the
and under the consideration of the Courant criterion, the eviinite-difference calculation from the predictions of Eq. [5].
lution of z-magnetization gratings in TCDs was calculated arféirst, the data in Fig. 7 demonstrate that diffusion not onl
compared to results from the phenomenological expressidampens oscillations of the grating but also shifts its ex
given by Eq. [5]. Figure 7 shows simulated magnetizatiamema to smaller radii. This effect has been observed earli
profiles after several, normalized evolution times;/(r,)>, (21) and is especially noticeable at the profile Bfr/
obtained for a TCD of normalized radii /¢ ,,) With 1, = 1 (ri)> = 0.01 in Fig. 7b. Consequently, when using Eq. [5]
andr ..« = 5. To show the influence of diffusion alone, weone must restrict the analysis to grating extrema that are n
neglectedr, relaxation in the profiles of Fig. 7. Consequentlysmaller than 10% of the initial value at = 0 (21). This
the long-term evolution profile 7/(r,,)> = o, Fig. 7c] fundamental difference between the two calculational mett
differs from the equilibrium magnetization reached after aboatls is not simply an artifact caused by impermeable samp
five timesT,. However, it also deviates from collapsing alboundaries. The comparison demonstrates that Eq. [5]

SIMULATIONS

Diffusion
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T, Relaxation

Different from the effects of diffusionT, relaxation decays
Z-magnetization gratings independent of the distances betwe
the grating’s extrema. In most cases, the influenceé,atlax
ation is easily calculated by Eq. [5] with the diffusion coeffi-
cient set to zero,

z Magnetization
[=]

M,.(r) = Meq[l - exp<—.;){1 - M 2,o<r>}]. [27]

whereM?2y(r) = M,o(r)/M, is the cosine term of the initial
PSRRI AT e S e grating as obtained from Eq. [4]. Figure 9 shommagneti-
0.5 14 1a 20 zation profiles after different normalized evolution time&T ,,
Distance, mm calculated from Eq. [27]. The oscillations decay as an exp
FIG. 8. Decay of a uniformez-magnetization grating in a confined samplenential function of the evolution time, and thermal equilibrium,
according to finite-difference simulations. The thick solid lines show thW¥l g, iS reached after/T, is greater than 5. After this time, all

progress of decay after an evolution time of= 1.5 s andr = 7.5 s, oscillations disappear and evaluation of the diffusion coeff
respectively, for an assumed diffusion coefficient of X010°° m? s cient is no Ionger possible.

Substantial edge enhancement is observed near the dark gray bars that sym-

bolize the sample boundaries.

APPLICATION

. . . Algorithm for Diffusion Coefficient and;TRelaxation Time
only a phenomenological approximation, not the exact so-

lution of partial differential equations. The second differ- Conventionally,D, T,, andM., would be obtained from a
ence between the calculations with Egs. [5] and [25] i§ree-parameter least-squares fit of simulated curves to exp
readily seen as a result of adding spatial limitations to the@ental data. Conducting this least-squares fit, however, n
sample volume. Here, diffusion is restricted to the inside essitates a new, complete finite-difference calculation for e
the sample volume, and grating extrema adjacent to tB& refined parameter set, starting with the initial
boundaries decay slower than expected by Eq. [5]. At tifemagnetization grating. To reduce computer calculation tim
central conductor, this diffusive edge-enhancement effe@ favor an alternative approach that requires only one finit
(17) is especially visible at the profile oD7/(fmn)? = d?fference calculatiqn. In this alternative approaqh, the finit.e
0.0025 in Fig. 7a. With increasing evolution time, the areggffergnce progression steps (Eq. [25]) are carried out usir
of enhanced magnetization reaches further into the sampf@At, i.€., anormalized time step. To ensure convergeag,
(Fig. 7b). Because of the looser grating adjacent to tjjaust obey the Courant criterion derived from Eq. [26]. Afte

sample boundary at/r,,, = 5, edge enhancement occur?aCh time step (total progressionldDAt, whereH = 0, 1,

more slowly at the outer wall of the TCD. Here, however, an
evaluation with Eq. [5] can lead to negative “apparent”
diffusion coefficients, sincez magnetization temporarily
rises above its initial value (Fig. 7b).

Finite-difference diffusion simulations are not limited to
TCDs but can likewise be conducted for other sample geom-
etries or otheB, gradients. For example, Figots the decay
of a uniform magnetization grating of a surface coil as calcu-
lated from the finite-difference equation of planar sheets with
evenly spaced function values (Eq. [20]). Using this procedure
instead of Eq. [2], one can account for the impermeable sample
confines, and edge-enhancement effects are clearly shown.
Figure 8 also reveals that the edge enhancement depends Normalized Radial Distance (r/r., )
largely on the phase of the initial grating. At both sample
confines Q(min = 0.2 mm andX,., = 2.3 mm), however, FIG. 9 _Decay of a toroid (;ayity magnetization grating 'ﬁy!’elaxation.
magnetization fist increases and, again, can lead to negaffJg 0 1% S e renanng g ascauied forafrert
apparent diffusion coefficients if evaluated with the phenomsciusively show the effects of relaxation, we neglected diffusion in th
enological approach of Eq. [2]. calculation.

Zz Magnetization
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2,...), a linear regression is conducted to deterniihg
andT,,

M, .(r) = by + bM g,HDAt(r)u [28] )
x
where the coefficientb, andb, are derived from Eq. [27]:
T T
bO: Meq 1_ ex _ﬁ y b]_: Mele _Til . [29] .

_ o _ ) 0 100 200 300 400 500 600 700

The data pointsa and z of the_ finite-difference cal<_:u|at|0n Number of finite-difference progressions (H)

usually cover irregular sample intervals that are confined by the

impermeable boundaries at,., and r ., respectively. The F.IG.. 10'. Plot of the maxi_rnum-likeli_hood parametyg_?versus the numbe_r

experimental data o and z, however, represent averaged’f flnlte-dlffer(.en.ce progressiond of width DAt.."I'he |ns¢t sﬁows a detall
. . around the minimum of the curve and exemplifies the individual results b

magnetizations from the entire range covered by these dgégq circles

points. Accordingly, althougta and z are included in the

finite-difference calculation, except whém , or Ar, is within

the range of the square root of the computer’s round-off errQr

(vide suprg, only values froma + 1 toz — 1 are used for the the only minimum of the curve, because decay of the well

Im?_ﬁr regre_ssmn.l_k lihood criteri £l . .ordered, radially dependemtmagnetization grating by diffu-
€ maximum-Iikelinood Criterion ot linear regressions 1y, is irreversible; i.e., itis a process of continuously increa:

the sum of Ieast-sqgares devigt?ons of experimental d?‘ta fr ﬁﬁ entropy. With the finite-difference procedure, the entrop

S|mulat”ed data34), i.e., the minimum of the so-called Ch"process is reproduced stepwise, ayiddecreases until the

Square” parameter, entropies of the calculated grating and the experimental ima
match. Each additional finite time step increases the predict

well mapped by the finite-difference step widiDAt). It is

=1 M b — bBM.. o\ 2 amount of entropy and, therefore, further deviates from th
2 _ z,k,exp 0 1WVlzk,sim . .
x:= > ( p ) [30] entropy of the experimental image.
k=a+1 K With Eq. [29], the value®, ., andb, ., leading to the total

minimum, xZ.,, are used to extract, and M., according to
whereM,, ., are magnetizations derived from the experiment,

M..sm @re simulated data from the finite-difference calculation, B B T
ando, are experimental standard deviations of the data points Meq = Domin+ Drmin  T1 = bo [31]
k. Usually, standard deviations of NMR intensities are esti- In(l + b, >

,min

mated from the noise of the spectrum. Because magnetizations

?r:ct;ni?tiégl]a(?(;sb’wl;’E*ezgoilriocifg\iﬁgrggosn;sd“:(')SI%?tig:]::?tgal The diffusion coefficientD, is calculated from the number of
K Y T ’ prop finite time stepsH .., used to reach the minimum in thg

(Eq._ [7]).2Accord|ngly, standard dewat.lons n Eq. [30] a'%urve and from the normalized step widibAt, according to
o = ook?, whereag, is a constant that is typically unknown
and expendable for the linear-regression procedure. It is set to
o, = 1, and standard deviations of, = k* are used in Eq. _ Hrin(DA)
[30]. However, for the determination of confidence intervals T '
(i.e., for the probabilities of finding the true parameters within
a certain range around the best fit), must be known and is  Figure 11 shows the flowchart of a computer progr&®) (
specified as discussed later. for the evaluation of; relaxation and diffusion. At the begin
Since x? is used not only as the maximum-likelihood estining of the algorithm, experimental parameters, geometr
mator forM., and T, but also for the diffusion coefficierd, parameters, and the torus factak)(must be provided for the
minimum x? values of Eq. [30] must be saved after each finitealculation. With these values, the computer program simulat
time step and compared with the minimyhof the next step. the normalized, initial grating/l 2o(r) produced by the prepa
In Fig. 10, typical minimumy® values are plotted versus theration pulse, P1, and determines the data pointghat fall
number of finite time stepkl. The curve shows a minimuminside the TCD & = k = z). Then, the diagonal propagation
that represents the maximum likelihood of all three parametebgnd matrixP (Eq. [25]) is constructed, and the normalizec
Me, T1, andD. In addition, the inset shows that the minimunime stepDAt, is calculated from 80% of its maximum value,

(32]
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DATA INPUT: XZSXZmin+ 1. [33]
Toroid Cavity Parameters: Experimental Pa elers:
e tomusfactor  (A) ®  magnetogyric ratio  (v) Equation [33] holds for relationships with one dependent var
R e, | i able. For this kind of relationship, the standard confidenc
® data points (m) interval is equal to the half-height range of a Gaussian distr
bution and is usually termed the standard deviation. In the pl
of x* versusnDAt (e.g., Fig. 10)T, andM,, are optimized by
T the linear regression; consequently, oblyis dependent, and
sk frite Sl e 20 Eq. [33] is used to evaluate the standard deviation.

Mool y D As discussed earlier, experimental standard deviatiops,
are typically unknown. Withr, set to unity, the calculateg?
values are relative numbers that must be adjusted to repres

Elaite: fifrsuce peoiostien experimental standard deviations. A reasonable and comm
Moo= P M, method for adjustingy® is to assume that the theory of the

) Experimental data | simulation is complete and accurate. By doing this, however,

M, i must be carefully considered whether the random walk c

5 particles and radially independent longitudinal relaxation ar

Li“ejgfﬁif;;‘lig;"’”') ) the only effects modifying the magnetization gratings. In par
ticular, relaxation and diffusion during the pulses, pulse im

perfections, and off-resonance effects must be negligible. A

— _ ditionally, accurate representation of themagnetization by
NO @ YES  [eiiusion sec £, relexation the RFI procedure must be ensured. If these prerequisites hc
D=y deviations between experimental and simulated data at the tc

T, = t/In(1+by/b,) L. 2 . . .
minimum, x.., are solely based on experimental deficiencie

(e.g., receiver noise), and the standard deviation of experime
tal data points is recalculated by

DATA OUTPUT: Standard deviation
o  Diffusi flicient (D) of diffusion M b b M 5
11Tusion coelhicien _— L — . .
® Siandard deviation (= AD) +AD S 1 ) zkexp O,mmz L min'¥izk,sim
e Relaxation time (1) 5 -a k [34]
®  Best-fit simulation of o5= 4
magnetization grating ( zZ— l) - (a + l) —m

FIG. 11. Flowchart of the computer program for the simultaneous evalwhere (z — 1) — (a + 1) reflects the numbers of data points
ation of the diffusion coefficient[) and the relaxation timeT() by the ysed for the linear regression, amdis the number of param-
finite-difference approach. eters determined by the regression; ie.= 2 for T, andM,,

(34). Accordingly,

according to the Courant criterion (Eq. [26]). After the initial 5
application ofP, the least-squares paramejgr(Eq. [30]) is 0o = X min _
calculated from the coefficients, andb, of the linear regres z—a—4
sion (Eq. [29]). The result is stored, and another finite propa-

gation step is conducted. Again, the least-squares parawfetelf the relative numbers obtained from Eq. [30] are divided by
is evaluated and then compared with the stoyedalue. If the o, (Eq. [35]), meaningful® deviations are obtained, and =
latter is smaller, the finite-difference propagation is repeatad + 1 (Eq. [33]) can be used to determine the standar
until the minimum, xZ,,, is found. This minimum is used to deviation of the diffusion coefficient. Alternatively, a threshold
calculateM,,, T,, andD according to Egs. [31] and [32].  of x* = x&n + 0, Can be applied, and the standard deviation i

obtained without rescaling® data.

(35]

Standard Deviation and Confidence Interval

Confidence intervals of diffusion coefficients derived l‘romS elf-Diffusion in Experiments with Acetone

the finite-difference approach above are determined as outline@®everal experiments have been conducted to generate m
in detail elsewhere3g). Accordingly, a standard confidencenetization gratings in homogeneously filled TCDs and to in
interval is the region around the calculated diffusion coeffirestigate their subsequent decay during an evolution time
cient, in which the true coefficient can be found with 68.3%he gratings were imaged by an RFI procedure (P2 in Fig. 1
probability, and is given by a threshold of and, from the radially dependent signal intensities, diffusio
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duce the diffusive edge enhancement and the shift of t
magnetization extrema to smaller radii both neglected by E
[5] (heavy gray lines in Fig. 12). For acetone at room tempel
ature, the two experiments indicate self-diffusion coefficient
of 484X 10° + 0.22 X 10° m* s™* (+4.5%) and 4.73x
10°° = 0.15X% 10°° m® s (£3.2%), andT, relaxation times
of 5.45 s (-2.0%) and 5.65 s%1.8%), respectively. The
confidence intervals (standard deviations) of both measur
ments in Fig. 12 cover the value of the acetone self-diffusio
coefficient that was determined independently by another tec

z Magnetization @

b )
c nique @2).
2
©
-_:=; _____ CONCLUSION
S [ 3
=) . o
2 W A new calculational method (finite-difference approach) ha
N been developed to accurately simulate molecular diffusion ar
, ; : ; nuclear spin relaxation in MAGROFI experiments. The nev
1.2 1.4 1.6 1.8 2.0 theoretical approach defeats the shortcomings of phenomer
Radial Position, mm logical equations, such as neglect of sample geometries wi

FIG. 12, Plot of mental RF! intensities (circles) dial i singularities at the confines of the sample volume. Furthe
. 12. Plot of experimenta intensities (circles) versus radial dis: . . . . ..
tance obtained from toroid MAGROFI experiments with acetame=(512, more, since sample geometries are included in the finit

Atm, = 12 s, A = 0.6934+ 0.0014 mTmm). Dark gray, vertical bars difference approach, it is not necessary to invoke “appare
represent the sample confineraf, = 1.0 mm (central conductor). In (a), the diffusion coefficients” to describe diffusion at or near spatia
preparation pulse width was setttg = 212 us, and a positive edge enhance singularities, such as sample confines. When using toroid ca
ment is observed. In contrast, a negative enhancement is obtained in (b), W*PEifedetectors (TCDS) for the experiments, key advantages su

the preparation pulse width was set to a slightly different valpe=t 195 ws). . Aafi ifoR
In both cases, the finite-difference evaluation (solid lines) correctly reproducaeg the strong, mathematlca"y well-defined, nonunif

the enhancement effect neglected by the phenomenological approach (h&ikgdient a!ﬁ'd the highly reproducible, _Un'quelsample geomet
gray lines). Thin horizontal lines show baseline offsets caused bselax are exploited. Further, MAGROFI is a simple two-pulse

ation. method that does not requii, gradients. Accordingly, the
experiments are not affected By gradient-switching imper
fections orB, susceptibility mismatches at sample boundarie
coefficients were determined with the finite-difference procer interfaces. These important features make the toroid cavi
dure. In addition, standard deviations of the coefficients wekAGROFI technique combined with our finite-difference cal-
calculated. Figure 12 shows experimental data (circles) derivedlations one of the most accurate NMR methods for dete
from two separate experiments, both conducted with a TQBining molecular self-diffusion in fluids.
(inner radius of ,;, = 1.0 mm, outer radius af,,., = 5.0 mm) In addition to the determination of self-diffusion and diffu-
completely filled with acetone. In the experiment of Fig. 12a&jon in homogeneous mixtures, the finite-difference approa
the MAGROFI pulse sequence was applied with a preparatipresented here makes it possible to include concentration
pulse oft,; = 212 us and an evolution time af = 1.0 s, while spatially dependent diffusion measurements. For simplicity i
Fig. 12b resulted from a preparation pulsef= 195us and our discussion of the finite-difference equations, this featur
an evolution time ofr = 1.0 s. During both experiments, 512has not explicitly been addressed here. However, a propagat
spectra with incrementally increasing pulse width$ 4 = 12 matrix similar to the one in Eq. [23] can be derived from the
us) were recorded for the RFI procedure. Although the pul$iaite-difference expression of Eq. [18], where each data poi
widths t,, of the two experiments in Fig. 12 were similar andk maintains an individual diffusion coefficiei,.
all other parameters were kept the same, Fig. 12a exhibits dn addition to the optimization oD, T,, andM,, we have
positive and Fig. 12b a negative edge enhancement near dttempted to incorporate an optimization of the torus fa&or,
central conductor at,;, = 1 mm. The experimental magneti into the evaluation of MAGROFI data sets. However, sever:
zation was compared to data derived from both the finitescal minima occurred in the plot of? versusHDAt, depend
difference approach as described above and the least-squarésdgion the magnetization-grating profile. As a consequence, t
to the phenomenological approach of Eq [5]. The best fits astandard deviations increased significan8y)( Therefore, we
shown as black and heavy gray solid lines in Fig. 12, respgecommend thaA be determined separately from a regula
tively. The black lines (finite-difference approach) reveal atoroid cavity RFI measurement. This should be interleave
excellent agreement between the theory and the experimentwith the diffusion measurement to ensure equal experiment
the inner confine of the sample volume, they correctly reproenditions.
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Because diffusion is accurately described not only inside a frame imaging technique for diffusion and flow measurements, J.
homogeneously filled sample volume but also at singularities, Magn. Reson. A 112, 7-12 (1995).
the finite-difference approach is useful for investigating diffull- D- |. Hoult, Rotating frame zeugmatography, J. Magn. Reson. 33,
sive mass transport between phases (e.g., liquids swelling 183-197 (1979)
polymers) or through membranes (e.g., in osmosis). When tife J: L- Bowers, P. M. Macdonald, and K. R. Metz, Rapid chemical-

. . shift selective MR imaging with use of radio-frequency field gradi-

central c_onductor is used as a working electragig 89, the ents, Radiology 173(P), 227 (1989).
method mtroduced here can help t9 extract FranSport ”“”,‘b?é.s D. Boudot, D. Canet, and J. Brondeau, Spatial labeling by a radio-
that are important for electrochemical studies or, combined frequency field gradient. DANTE-Z profile, probed by one-dimen-
with the ability of the RFI procedure to retain chemical-shift sional nutation imaging, J. Magn. Reson. 87, 385-394 (1990).
information, it can be employed to analyze diffusion-limited4. K. R. Metz, J. P. Boehmer, J. L. Bowers, and J. R. Moore, Rapid
chemistry on the surface of an electrode. All the experiments rotating-frame imaging using an RF pulse train (RIPT), J. Magn.
suggested above can easily be conducted under high pressur&eson. B 103, 152-161 (1994).
and high temperature, since TCDs are easily implemented iffo J: J. H- Ackerman, T. H. Grove, G. G. Wong, D. G. Gadian, and
NMR autoclave probes20, 38. In future work, we plan on G. K. Radda, Mapping of metabolites in whole animals by *P NMR

using this new technique for diffusion measurements unde using surface coils, Nature 283, 167-170 (1980).
9 q 16r. D. I. Hoult and R. E. Richards, The signal-to-noise ratio of the

supercritical conditions (e.g., in supercritical §O nuclear magnetic resonance experiment, J. Magn. Reson. 24,
71-85 (1976).
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